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ABSTRACT:

Object-based classification is a promising methodology. Unlike pixel-based techniques which only use the layer pixel values, the
object-based techniques can also use shape and context information of a scene texture. These extra degrees of freedom provided by the
objects will aid the identification of visible textures. In this article, we present a procedure for object-based automatic classification.
Using this procedure, we made algorithms to classify the geological faults using remote sensing data and fission-tracks in microscopic
images. We also show how the notion of the object makes the task easy to use the result of classification for varius studies.

1 INTRODUCTION

The object-based classification starts with segmentation of the
image into highly homogeneous image regions (or objects). These
image segments correspond to the approximations of real world
objects which can be characterised by shape and texture (Benz et
al, 2004). Often in image processing, the objects to be identified
in the image can be visually separated based on their shape and
texture details. Object-based classification techniques can thus
be efficient in the context of identifying visible objects. An au-
tomatic classification procedure is prepared in this effect to min-
imise human involvement in classification steps. Such a proce-
dure, speeds up the process of classification when huge data is to
be dealt with, however at the expense of accuracy. We used this
procedure to make algorithms for extracting morphology of geo-
logical faults using remote sensing data and in identifying fission
tracks in microscopic images

2 METHODOLOGY

Figure 1: The Procedure for Object-based Classification

The flowchart shown in Fig. 1 illustrates the procedure. The aim
is to classify the image into two classes i.e. the object class of in-
terest and the background. Based on the above procedure we can

make algorithms for different cases, by using different techniques
in the different stages of the procedure. In this article we present
algorithms that are based on the assumption that all the random
variables encountered during the processing can be approximated
as Gaussian distributions.

1. Preprocessingis an optional step. It is to ensure proper seg-
mentation (dividing the image in to small groups of pixels)
by means of creating extra image layers or enhancing ex-
isting image layers. In some cases using averaging filter
on the image can help to extract better image objects. Dif-
ferent image scenario will require different pre-processing
steps. Processing a radar image requires that the speckle
has been minimised, whereas processing a Digital Eleva-
tion Model (DEM) to extract lineaments and faults necessi-
tates that a derivative image has been prepared. Sometimes
the pre-processing step can be crucial as the basic step of
object-based classification is to first generate approximate
real world objects and it requires that these object regions in
the image are homogeneous.

2. After segmenting the image into primitive objects, a few
samples are collected. This can be donemanuallyby se-
lecting samplesin the image based on human interpretation
or statisticallyby selecting specific regions in the concerned
image histograms. For example if the objects of class of in-
terest are characterised by bright regions compared to other
objects in the image, then 2-5% of the objects in the image
histogram which have high mean values are taken as sam-
ples of class of interest and 2-5% of image objects which
have low mean values are assigned as samples to the back-
ground class.

3. Theoptimal featurescan be identified visually by looking
at the feature values graphically. Unless we have a good
understanding of the type of classes and can intuit what
features can be possible candidates, it can be a laborious
task to identify them as the objects can be characterised
by a huge number of features. When we have samples of
the classes, we can automatically identify the optimal fea-
tures (features are the characteristics defined for an object.
e.g., mean value, standard deviation, length, width, area, etc
(Baatz et al, 2004)) which can separate the two classes ef-
fectively based onJeffries-Matusita distance, J (Nussbaum



et al, 2005). For two classesC1 andC2 of sizen1,n2 with
meansm1,m2 and standard deviationsσ1,σ2 respectively,
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B is theBhattacharya distance. Then,

J = 2(1− e−B) (2)

A distance measure different to that of the Jeffries-Matusita
distance can also be used in this step to identify the optimum
feature space.

4. With respect to the means of the samples of two classes and
in the feature space defined by the optimal features identi-
fied in the previous step, clusters are formed using the mini-
mum distance criterion. This clustering is an approximation
of the desired classification. To represent all the features on
a common scale, a transformation has to be made on the fea-
ture values before clustering. This transforms all the feature
values in the range of [0,1]. For every object feature value
F of a particular feature,

F1 = F − Fmin (3)

F ′ =
F1

F1max
(4)

Fmin is the minimum of the object feature values of that fea-
ture,F1max is the maximum of valuesF1 obtained in first
step.F ′ is the transformed feature value ofF . A different
clustering algorithm can also be used at this stage.

5. The final thresholds for features to separate the two classes
is then found based on Bayes’ conditional probability prin-
ciple. For classesC1 andC2, the threshold can be found as
(Nussbaum et al, 2005)
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Using this, the thresholds of features are calculated for the
two classes (i.e., class of interest and the background), based
on the distribution of objects classified in the previous step.
The real thresholds are near these calculated thresholds. An
example probability distribution of the classes can be ob-
served in Fig. 2. From the figure, we can interpret that the
thresholds should be moved further towards mean of back-
ground class so as not to mis-classify any of the objects of
the class of interest. However, shifting the threshold much
further can be troublesome as more objects of background
class will be included for the sake of very less objects of the
class of interest. Having the thresholds close to the actual
thresholds found immediately after clustering rather than the
mean of background class, is a safe prospect though there
will be some misclassification. This can be achieved by
defining a simple criterion using the separability measure.
If J < 0.5, the feature is ignored. Otherwise,

T ′ = m2, for 0.50 ≤ J ≤ 1.25
T ′ = (T + m2)/2, for 1.25 < J < 1.75
T ′ = T , for J ≥ 1.75

Figure 2: Finding the threshold

The above criterion is based on observations using random data.
It has been observed that this criterion is suitable when more fea-
tures with a betterJ value exist. The objects are finally classified
using these thresholds. The classification is based on an ‘AND’
operation and as enough number of features are considered with
well defined thresholds, majority of the background class objects
from the cluster of objects of the class of interest are reclassified
as background objects and vice-versa.

3 CASE STUDIES

3.1 Extracting the morphology of normal faults

Background: Normal faults are formed in the rifts. Arift is
a region where the Earth’s crust and lithosphere are under ex-
tensional strain, hence forming a series of horst and graben seg-
ments. The fractures generated in this process of rifting are nor-
mal faults. Fig. 3 shows the geometry in a rift. The faults grow in
time and form a network of faults which is fractal.

Figure 3: The fault geometry in a rift

By virtue of the geometry of a side-looking imaging radar, the
same scene imaged in two opposite directions can effectively map
the faults (Henderson and Lewis, 1998). A DEM can also be
used for identification of the faults as the faults are characterised
by steep slopes. The radar images are one of the sources, for
generating a DEM and hence are the basic input in the process of
fault mapping.

In this context an algorithm is prepared using the defined proce-
dure to process the radar images and DEM separately and auto-
matically classify the faults in the region described by the image.
The algorithm is applied on the data of Lake Magadi area in South
Kenya. This area is chosen as it is an active fault zone. The two



images of the stereo pair should be used to classify the two direc-
tions of the faults and the result has to be combined to generate
the final fault map. Such a fault map is essential to analyse the
deformation of the region. For example, studying the fault statis-
tics to calculate the fractal dimension gives an indirect measure
to quantify the deformation of the region. The concept of the
object thus helps in determining the statistics immediately after
classifying as the resulting map contains objects of faults.

Algorithm and Results: The algorithms for classifying the DEM
and radar image will almost be the same, except for the pre-
processing step and identifying proper input parameters for seg-
mentation. In the pre-processing step, radar images are speckle
filtered and averaged to produce homogeneous textures and dif-
ferent approximations of derivative of a DEM are used as image
layers in the case of DEM. Faults are characterised by high ampli-
tude in radar images and high derivative values in the DEM. For
the same resolution in the images, the segmentation parameters
will be the same. Samples are then selected from the concerned
histograms of the means of the objects. Fig. 4 shows the deriva-
tive of the DEM from Lake magadi region in south Kenya. The
synthetic aperture radar (SAR) image used here is acquired using
RADARSAT. Fig. 5 and Fig.6 show the results of automatically

Figure 4: Derivative of the DEM in the region near Lake Magadi,
South Kenya

classifying the DEM and radar image respectively. As, can be
observed the result of the DEM is more convincing than the radar
image. So it is suggested that the DEM should be first created out
of the stereo pair and the faults are extracted from the DEM for
further extending the classification to study the statistics of the
faults. Fig. 5 and Fig.6 show the results of automatically classi-
fying the DEM and radar image respectively. As, can be observed
the result of the DEM is more convincing than the radar image.
So it is suggested that the DEM should be first created out of the
stereo pair and the faults are extracted from the DEM for further
extending the classification to study the statistics of the faults.

As mentioned earlier, the notion of the object helps in the image
analysis after the classification. After the classification every real
world fault is a fault object in the image. So, it is easy to esti-
mate the statistics of the faults using the faults objects in the im-
age. The shape of the object can be used to find the approximate
width and length of the faults. This statistics help in determining
the fractal dimension of the faults in that region, which has many
applications in geosciences (Turcotte, 1997). Fig. 7 shows the

Figure 5: Faults in the DEM (unwanted areas like volcanoes are
masked)

Figure 6: Classified faults (indicated as red regions) in the radar
image of the Lake Magadi region, South Kenya

length distribution and the corresponding fractal dimension cal-
culated using that information. The linearity of the curve in the
log-log plot of the cumulative histogram of lengths of faults also
validates the method used in the present work. Such applications
of objects after classification makes the object-based methodol-
ogy a powerful tool in image analysis.



Figure 7: The histogram of the faults lengths and the correspond-
ing cumulative histogram curve in logarthmic scale to find fractal
dimension.

3.2 Identifying Fission-tracks in Microscopic images

Background: The fission-track dating method is now commonly
used in geological research but hindered by time consuming track
counts and length measurements. Attempts at automation using
conventional image analysis techniques on digital data have hith-
erto proved of limited practical use (e.g. Morgan et al, 2003).
To automate the process of counting the tracks, we try to mimic
human thinking procedures. We first identify all the tracks in the
image and then count the number of tracks by accounting for the
number of intersections. The first step in doing that is to auto-
matically classify the tracks and define ’tracks’ objects. When
the tracks are identified, then we can work on identifying proce-
dures to count the individual tracks by counting the intersections.
We used the procedure described in this article to develop an al-
gorithm for first identifying the tracks objects in the image.

Algorithm and Results: The pre-processing step involves some
image enhancement and morphological closing to generate ho-
mogeneous regions of tracks. It has been observed in several of
the acquired images that the standard deviation of the pixel val-
ues of the fission-tracks pixels is very high compared to that of
the background. It is therefore the objective of the pre-processing
step to generate homogeneous areas by reducing the standard de-
viation of the fission-tracks pixels. The following transformation
is applied to the image

I1 =
√

I2
max − I2 (6)

Imax, is the maximum value in the imageI. The imageI1 is
then inverted so as to represent the tracks pixels in dark as the
above transformation inverts the image histogram by compress-
ing the lower part of the histogram. Then, on the resulting image,
morphological closing operation is performed so as to generate
homogeneous regions. Fig. 9 shows the result of processing the
image shown in Fig. 8 using the described method.

Figure 8: A microscopic image showing tracks to be identified

Figure 9: Processesed image using image enhancement and mor-
phological closing

Figure 10: A comparison using a close-up. It can be observed
that the tracks are more homogeneous

The rest of the algorithm is the same as in the case of faults. The
same distance measure is used to find the optimal features. The
segmentation parameters are to be identified separately for dif-
ferent images based on lens magnifications. For a set of images
acquired with the same camera on the same microscope using the
same lens magnification, the same set of segmentation parameters
will apply. So, it is necessary to fist define standards for image
acquisition so as to use the same segmentation parameters.



Tracks are characterised with low pixel values in the image. So,
objects at the lower end of the histogram of the object means are
selected as samples for object class of interest i.e., tracks. And,
the objects at the higher end of the histogram are taken as samples
of background objects class. In the present case a microscopic
image acquired with a lens magnification of 20 is used. The re-
sult of classification is shown in Fig. 11. The object-based

Figure 11: Classified Tracks

Figure 12: Zooming the regions 1,2,3,4 in the classified image.
The classification is seen in magenta and green over the grey scale
image.

classification extracts the shape of the tracks with a good over-
all accuracy. The classified objects are then ready for a different
stage where the shape of the object is analysed to detect the inter-
sections so as to count the exact number of tracks in the image.
The concept of using objects for classification thus helps in using
the object information directly in the next stages where the tracks
are counted.

4 CONCLUSIONS

A procedure has been defined for object-based automatic classifi-
cation. We show that the object-based classification is a powerfull
tool to extract visible textures automatically. We have demon-
strated on two geological examples that the proposed procedure
allows an accurate counting of the objects. This results have a
huge impact for the determination of stress and strain in exten-
sional structures and the FT-dating of rocks. This method has a
more general outcome for image analysis. The algorithms devel-
oped by using the procedure provide very good results with an

overall accuracy of> 90%. The concept of object helps in the
post-classification image analysis. A gaussian approximation of
all the distributions encountered has been used in this work. But
it is possible as a future work to use a maximum likelihood es-
timator to incorporate several other distributions if appropriate.
After the minimum distance clustering, we get an approximate
distribution of the original classes. If the model fits the original
distribution, the calculated thresholds will be more accurate.
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